216 research outputs found

    A pilot investigation of the efficacy and safety of magnesium chloride and ethanol as anesthetics in Loligo vulgaris embryos.

    Get PDF
    The inclusion of cephalopods in the legislation related to the use of animals for experimental purposes has been based on the precautionary principle that these animals have the capacity to experience pain, suffering, distress, and lasting harm. Recent studies have expanded this view and supported it. Handling cephalopod mollusks in research is challenging and whenever more invasive procedures are required, sedation and/or anesthesia becomes necessary. Therefore, finding adequate, safe, and effective anesthetics appears mandatory. Several substances have been considered in sedating cephalopods, in some instances applying those utilized for fish. However, species-specific variability requires more detailed studies. Despite long-lasting experience being linked to classic studies on squid giant axons, evidence of action on putative anesthetic substances is scarce for Loligo vulgaris and particularly for their embryos. The aim of the current study was to evaluate effects elicited by immersion of squid embryos in anesthetic solutions and examine whether these forms display a similar reaction to anesthetics as adults do. Different concentrations of ethanol (EtOH; 2, 2.5, and 3%) and magnesium chloride (MgCl2; 1, 1.5, and 1.8%) were tested by adopting a set of indicators aimed at exploring the physiological responses of squid embryos. Forty-two embryos of the common squid Loligo vulgaris (stages 27-28) were assigned to three conditions (EtOH, MgCl2, and controls) and video recorded for 15 min (5 min before, 5 min during, and 5 min after immersion in the anesthetic solutions). In each group, the heart rate, respiratory rate, buoyancy, chromatophore activity, and tentacles/arms responses were assessed to evaluate the embryos' vitality and responsiveness to stimulation. Both substances provoked a decrease in heart and respiratory rates and inhibited buoyancy, chromatophores, and tentacles/arms responses; no adverse effects were observed. EtOH had a faster onset of action and faster recovery than MgCl2, being potentially more adequate as an anesthetic for shorter procedures. Even though MgCl2 caused a longer muscle relaxation, the reversibility was not confirmed for the 1.8% concentration; however, lower concentrations triggered similar results as the ones obtained with the highest EtOH concentrations. We have shown that the late developmental stages of Loligo vulgaris embryos could represent a good model to evaluate anesthetics for cephalopods since they can display similar reactions to anesthetics as adults animals do

    Genetic and developmental mechanisms underlying the formation of the Drosophila compound eye

    Get PDF
    The compound eye of Drosophila melanogaster consists of individual subunits (“ommatidia”), each containing photoreceptors and support cells. These cells derive from an undifferentiated epithelium in the eye imaginal disc and their differentiation follows a highly stereotypic pattern. Sequential commitment of pluripotent cells to become specialized cells of the visual system serves as a unique model system to study basic mechanisms of tissue development. In the past years, many regulatory genes that govern the development of the compound eye have been identified and their mode of action genetically dissected. Transcription factor networks in combination with cell–cell signalling pathways regulate the development of the eye tissue in a precise temporal and spatial manner. Here, we review the recent advances on how a single-cell-layered epithelium is patterned to give rise to the compound eye. We discuss the molecular pathways controlling differentiation of individual photoreceptors, through which they acquire their functional specificity

    Age- and wavelength-dependency of drosophila larval phototaxis and behavioral responses to natural lighting conditions

    Get PDF
    Animals use various environmental cues as key determinant for their behavioral decisions. Visual systems are hereby responsible to translate light-dependent stimuli into neuronal encoded information. Even though the larval eyes of the fruit fly Drosophila melanogaster are comparably simple, they comprise two types of photoreceptor neurons (PRs), defined by different Rhodopsin genes expressed. Recent findings support that for light avoidance Rhodopsin5 (Rh5) expressing photoreceptors are crucial, while Rhodopsin6 (Rh6) expressing photoreceptors are dispensable under laboratory conditions. However, it remains debated how animals change light preference during larval live. We show that larval negative phototaxis is age-independent as it persists in larvae from foraging to wandering developmental stages. Moreover, if spectrally different Rhodopsins are employed for the detection of different wavelength of light remains unexplored. We found that negative phototaxis can be elicit by light with wavelengths ranging from ultraviolet (UV) to green. This behavior is uniquely mediated by Rh5 expressing photoreceptors, and therefore suggest that this photoreceptor-type is able to perceive UV up to green light. In contrast to laboratory our field experiments revealed that Drosophila larvae uses both types of photoreceptors under natural lighting conditions. All our results, demonstrate that Drosophila larval eyes mediate avoidance of light stimuli with a wide, ecological relevant range of quantity (intensities) and quality (wavelengths). Thus, the two photoreceptor-types appear more likely to play a role in different aspects of phototaxis under natural lighting conditions, rather than color discrimination

    Genetic control of photoreceptor terminal differentiation in Drosophila melanogaster

    Get PDF
    Why do photoreceptors differentiate in the eye? Though simple, biologically this is an important question, and it may prove complex to answer. To present a bigger picture: animals have evolved a diversity of highly specialised sensory organs, which they use to obtain information from their environment and thus survive. These organs contain different types of receptor neurons. For example, there are chemoreceptors in the labellum and in the antennae of insects, or mechanoreceptors in the inner ear of vertebrates... and each of these types of receptor neurons specifically possesses the molecular machinery to detect and transduce stimuli from one particular sensory modality. In the case of the eye, it contains photoreceptor neurons, which are specialised in light detection. Neither photoreceptors nor most of the components of the phototransduction cascade appear commonly outside the eye. Therefore, what are mechanisms that ensure that photoreceptors differentiate correctly in the eye, and not in other body parts? To start answering this question, first it might be useful to understand the early-acting process of eye field specification. This depends on a group of transcription factors that are collectively called the ‘retinal determination network’ (RDN), and work in combination with each other to confer eye identity to the developing, multipotent tissue. RDN genes are both necessary and sufficient for eye formation in different animal species, from Drosophila to vertebrates, and they tend to act through an evolutionarily conserved sequence of transcriptional events. First in this sequence, following the Drosophila nomenclature, the transcription factor Eyeless activates the expression of sine oculis and eyes absent. Then, Sine oculis and Eyes absent form a heterodimer and direct eye formation. Despite the importance of the RDN, until recently, little was known about its targets, or about the molecular mechanisms by which it coordinates eye development. In particular, how does it instruct photoreceptor differentiation? Our work suggests that a key step in this process is coordinated by the zinc finger transcription factor glass, which is a direct target of Sine oculis. While previous literature has shown that the Glass protein is primarily expressed in photoreceptors, its role in these cells was not known because it was believed that glass mutant photoreceptor precursors died during metamorphosis. Contrary to former studies, we demonstrate that glass mutant photoreceptor precursors survive and are present in the adult retina, but fail to mature as functional photoreceptors. Importantly, we have found that Glass is required for the expression of virtually all the proteins that are involved in the phototransduction cascade, and thus glass mutant flies are blind. Consistent with this, ectopic expression of Glass is able to induce some phototransduction components in the brain. Another step in the formation of photoreceptors is regulated by the homeodomain transcription factor Hazy, which is a direct target of Glass. While we show that both Glass and Hazy act synergistically to induce the expression of phototransduction proteins, we have also found that Glass can initiate the expression of most of the components of the phototransduction machinery in a Hazy-independent manner, and that hazy mutant flies only fail to detect white light after they are older than five days. Glass seems to be both required and sufficient for the expression of Hazy, and inducing Hazy in the retina partly rescues the glass mutant phenotype. Taken together, our results show a transcriptional link between the RDN and the expression of the proteins that adult Drosophila photoreceptors need to sense light, placing Glass at a key position in this developmental process. Finally, we compare the expression pattern of Glass in Drosophila and in the annelid Platynereis, and discuss the possibility that Glass plays an evolutionarily conserved role across different phyla.Warum bilden sich Fotorezeptoren gerade im Auge aus? Obwohl diese Frage einfach erscheint, ist sie aus biologischer Sicht doch sehr bedeutend und bedarf eventuell einer komplexen Antwort. Allgemein lĂ€sst sich sagen, dass Tiere eine Vielfalt von hoch spezialisierten Sinnesorganen entwickelt haben, durch die sie Informationen aus ihrer Umwelt aufnehmen und auf diese Weise ihr Überleben sichern. Diese Organe enthalten verschiedene Arten von Rezeptorneuronen. Zum Beispiel gibt es Chemorezeptoren im Labellum und in den Antennen der Insekten, oder Mechanorezeptoren im Innenohr von Wirbeltieren... und jedes dieser Rezeptorneuronen besitzt eine spezifische molekulare Maschinerie, um Reize einer bestimmten SinnesmodalitĂ€t wahrzunehmen und umzuwandeln. Beim Auge sind es Fotorezeptorneuronen, die auf die Wahrnehmung von Lichtreizen spezialisiert sind. Weder die Fotorezeptoren noch die meisten der Komponenten der Fototransduktionskaskade kommen außerhalb des Auges vor. Welche Mechanismen sind demzufolge ausschlaggebend, damit sich Fotorezeptoren im Auge und nicht in anderen Körperteilen entwickeln? Um diese Frage zu beantworten, ist es zunĂ€chst wichtig die frĂŒhen Mechanismen der Augenspezifizierung zu verstehen. Diese erfolgt unter Einfluss einer Gruppe von Transkriptionsfaktoren, die als „Retinales Determinations Netzwerk“ (RDN) bezeichnet werden. Diese Transkriptionsfaktoren interagieren, um aus dem sich entwickelnden multipotenten Gewebe ein Sehorgan zu bilden. RDN-Gene sind fĂŒr die Augenentwicklung verschiedener Tierarten, von Drosophila bis zu Wirbeltieren, sowohl notwendig als auch ausreichend. Sie agieren durch eine evolutionĂ€r konservierte Sequenz transkriptioneller Mechanismen. An erster Stelle dieser Sequenz, nach der Drosophila Nomenklatur, aktiviert der Transkriptionsfaktor Eyeless die Expression von sine oculis und eyes absent. Anschließend bilden Sine Oculis und Eyes absent ein Heterodimer und induzieren die Entwicklung des Auges. Trotz der Bedeutung des RDNs war bis vor Kurzem nur sehr wenig ĂŒber seinen Zweck oder die molekularen Mechanismen durch die es die Augenentwicklung koordiniert, bekannt. Vor allem stellt sich die Frage, wie es die Differenzierung der Fotorezeptoren reguliert? Unsere Arbeit legt nahe, dass ein wesentlicher Schritt in diesem Prozess durch den Zinkfinger-Transkriptionsfaktor glass koordiniert wird. Dabei handelt es sich um ein direktes Zielgen von Sine oculis. Obwohl in frĂŒheren wissenschaftlichen Arbeiten belegt wurde, dass das Glass-Protein in erster Linie in Fotorezeptoren exprimiert wird, war seine Rolle in diesen Zellen nicht bekannt, da angenommen wurde, dass Fotorezeptoren von glass Mutanten wĂ€hrend der Metamorphose absterben. Im Gegensatz zu frĂŒheren Studien belegen wir das Überleben der Fotorezeptor-VorlĂ€uferzellen von glass Mutanten und ihre PrĂ€senz in der Retina adulter Fliegen, wobei sie jedoch nicht zu funktionsfĂ€higen Fotorezeptoren heranreifen. Insbesondere konnten wir zeigen, dass Glass fĂŒr die Expression fast aller Proteine, die in der Fototransduktionskaskade involviert sind, erforderlich ist. Daher sind glass Mutanten blind. In Übereinstimmung mit diesen Erkenntnissen bewirkt die ektopische Expression von Glass die Induktion einiger Komponenten der Fototransduktion im Gehirn. Ein weiterer Schritt in der Bildung von Fotorezeptoren wird reguliert durch den HomeodomĂ€nen-Transkriptionsfaktor Hazy, der ein direktes Ziel von Glass ist. Wir zeigen zum einen die synergetische Wirkung von Glass und Hazy bei der Expression von Fototransduktionsproteinen, zum anderen belegen wir, dass Glass die meisten Komponenten der Fototransduktionsmaschinerie unabhĂ€ngig von Hazy induzieren kann, und dass hazy Mutanten ab dem Alter von fĂŒnf Tagen weißes Licht nicht mehr wahrnehmen können. Glass scheint notwendig und ausreichend fĂŒr die Expression von Hazy zu sein und die Induktion von Hazy in der Retina rettet teilweise den PhĂ€notyp von glass Mutanten. Insgesamt beweisen unsere Ergebnisse einen transkriptionellen Zusammenhang zwischen dem RDN und der Expression von Proteinen, die in Fotorezeptoren von adulten Drosophila Fliegen notwendig sind um Licht wahrzunehmen. Bei diesem Entwicklungsprozess hat Glass eine SchlĂŒsselposition. Schließlich vergleichen wir die Expressionsmuster von Glass in Drosophila und im Anneliden Platynereis und diskutieren die Möglichkeit, dass Glass eine evolutionĂ€r konservierte Rolle ĂŒber verschiedene Phyla hinweg spielt

    Of circuits and brains. The origin and diversification of neural architectures

    Get PDF
    Nervous systems are complex cellular structures that allow animals to interact with their environment, which includes both the external and the internal milieu. The astonishing diversity of nervous system architectures present in all animal clades has prompted the idea that selective forces must have shaped them over evolutionary time. In most cases, neurons seem to coalesce into specific (centralized) structures that function as "central processing units" (CPU): "brains." Why did neural systems adopt this physical configuration? When did it first happen? What are the physiological, computational, and/or structural advantages of concentrating many neurons in a specific place within the body? Here we examine the concept of nervous system centralization and factors that might have contributed to the evolutionary success of this centralization strategy. In particular, we suggest a putative scenario for the evolution of neural system centralization that incorporates different strands of evidence. This scenario is based on some premises: (1) Receptors originated before neurons (sensors before transmitters) and there were deployed in the first organisms in an asymmetric fashion (deposited randomly in the outer layer); (2) Receptors were segregated in a preferential position in response to an anisotropic environment, (3) Neurons were born in association with this receptors and used to transmit signals distally; (4) Energetics preferentially selected the localization of neurons, and synapsis, close to the receptors (to minimize wire use, for instance); (5) The presence of condensed areas of neurons could have stimulated the proliferation of more receptors in the vicinity, increasing the repertoire of signals processed in an specific body domain (i.e., head) plus contributing to amplify the computational power of the neuronal aggregate; (6) The proliferation of receptors would have induced the proliferation of more neurons in the aggregate, with a further increase in its computational power (hence, diversifying the behavioral repertoire). These last two steps of proliferation and aggregation could have been sustained through a feedback loop, reiterated many times, generating distinct topologies in different lineages. Our main aim in this paper is to examine the brain as both a biological and a physical or computational device

    Mechanisms of vision in the fruit fly

    Get PDF
    Vision is essential to maximize the efficiency of daily tasks such as feeding, avoiding predators or finding mating partners. An advantageous model is Drosophila melanogaster, since it offers tools that allow genetic and neuronal manipulation with high spatial and temporal resolution, which can be combined with behavioral, anatomical and physiological assays. Recent advances have expanded our knowledge on the neural circuitry underlying such important behaviors as color vision (role of reciprocal inhibition to enhance color signal at the level of the ommatidia); motion vision (motion-detection neurones receive both excitatory and inhibitory input), and sensory processing (role of the central complex in spatial navigation, and in orchestrating the information from other senses and the inner state). Research on synergies between pathways is shaping the field

    The transcription factor Glass links eye field specification with photoreceptor differentiation in Drosophila

    Get PDF
    Eye development requires an evolutionarily conserved group of transcription factors, termed the retinal determination network (RDN). However, little is known about the molecular mechanism by which the RDN instructs cells to differentiate into photoreceptors. We show that photoreceptor cell identity in Drosophila is critically regulated by the transcription factor Glass, which is primarily expressed in photoreceptors and whose role in this process was previously unknown. Glass is both required and sufficient for the expression of phototransduction proteins. Our results demonstrate that the RDN member Sine oculis directly activates glass expression, and that Glass activates the expression of the transcription factors Hazy and Otd. We identified hazy as a direct target of Glass. Induced expression of Hazy in the retina partially rescues the glass mutant phenotype. Together, our results provide a transcriptional link between eye field specification and photoreceptor differentiation in Drosophila, placing Glass at a central position in this developmental process

    Associative learning in the cnidarian Nematostella vectensis.

    Full text link
    The ability to learn and form memories allows animals to adapt their behavior based on previous experiences. Associative learning, the process through which organisms learn about the relationship between two distinct events, has been extensively studied in various animal taxa. However, the existence of associative learning, prior to the emergence of centralized nervous systems in bilaterian animals, remains unclear. Cnidarians such as sea anemones or jellyfish possess a nerve net, which lacks centralization. As the sister group to bilaterians, they are particularly well suited for studying the evolution of nervous system functions. Here, we probe the capacity of the starlet sea anemone Nematostella vectensis to form associative memories by using a classical conditioning approach. We developed a protocol combining light as the conditioned stimulus with an electric shock as the aversive unconditioned stimulus. After repetitive training, animals exhibited a conditioned response to light alone indicating that they learned the association. In contrast, all control conditions did not form associative memories. Besides shedding light on an aspect of cnidarian behavior, these results root associative learning before the emergence of NS centralization in the metazoan lineage and raise fundamental questions about the origin and evolution of cognition in brainless animals

    Mushroom body-specific profiling of gene expression identifies regulators of long-term memory in Drosophila

    Get PDF
    Memory formation is achieved by genetically tightly controlled molecular pathways that result in a change of synaptic strength and synapse organization. While for short- term memory traces rapidly acting biochemical pathways are in place, the formation of long-lasting memories requires changes in the transcriptional program of a cell. Although many genes involved in learning and memory formation have been identified, little is known about the genetic mechanisms required for changing the transcriptional program during different phases of long-term memory formation. With Drosophila melanogaster as a model system we profiled transcriptomic changes in the mushroom body, a memory center in the fly brain, at distinct time intervals during long- term memory formation using the targeted DamID technique. We describe the gene expression profiles during these phases and tested 33 selected candidate genes for deficits in long-term memory formation using RNAi knockdown. We identified 10 genes that enhance or decrease memory when knocked-down in the mushroom body. For vajk-1 and hacd1, the two strongest hits, we gained further support for their crucial role in learning and forgetting. These findings show that profiling gene expression changes in specific cell-types harboring memory traces provides a powerful entry point to identify new genes involved in learning and memory. The presented transcriptomic data may further be used as resource to study genes acting at different memory phases

    Successive requirement of Glass and Hazy for photoreceptor specification and maintenance in Drosophila

    Get PDF
    Development of the insect compound eye requires a highly controlled interplay between transcription factors. However, the genetic mechanisms that link early eye field specification to photoreceptor terminal differentiation and fate maintenance remain largely unknown. Here, we decipher the function of 2 transcription factors, Glass and Hazy, which play a central role during photoreceptor development. The regulatory interactions between Glass and Hazy suggest that they function together in a coherent feed-forward loop in all types of Drosophila photoreceptors. While the glass mutant eye lacks the expression of virtually all photoreceptor genes, young hazy mutants correctly express most phototransduction genes. Interestingly, the expression of these genes is drastically reduced in old hazy mutants. This age-dependent loss of the phototransduction cascade correlates with a loss of phototaxis in old hazy mutant flies. We conclude that Glass can either directly or indirectly initiate the expression of most phototransduction proteins in a Hazy-independent manner, and that Hazy is mainly required for the maintenance of functional photoreceptors in adult flies
    • 

    corecore